

RESILIENCIA URBANA: EL CASO DE LA CIUDAD DE SANTA FE A PRINCIPIOS DEL SIGLO XXI

CALVI, Lumila Milagros lumilacalvi@gmail.com

FABRICIUS, Claudina Aylén claudinafabricius@gmail.com

MÉNDEZ, Lautaro Andrés lautaroamendez@gmail.com

WILKINSON, Alan Francis. alanwilkinson95@gmail.com

Facultad de Humanidades y Ciencias (FHUC). Universidad Nacional del Litoral (UNL). Santa Fe.

Agradecimientos: Aprovechamos este espacio para agradecer a todos aquellos que colaboraron en la elaboración de este trabajo. A nuestros docentes de la carrera por la predisposición para ayudarnos a resolver las incertidumbres que iban surgiendo; a las diferentes secretarías de la municipalidad de la ciudad de Santa Fe y al Centro de Información Meteorológica de la Facultad de Ingeniería y Ciencias Hídricas de la Universidad Nacional del Litoral por otorgarnos información solicitada.

Santa Fe, julio de 2016.

RESUMEN

En el presente trabajo se abordarán las políticas públicas implementadas a comienzos del siglo XXI orientadas a la construcción de infraestructura necesaria para prevenir anegamientos, a la luz del concepto de resiliencia urbana. Por lo tanto, se estudiarán situaciones de inundaciones pluviales que afectaron a la ciudad de Santa Fe, como las ocurridas en los años 2007 y 2015, que tuvieron un carácter extraordinario. Uno de los objetivos principales se vincula con el análisis de la capacidad de recuperación de la ciudad, como así también con la generación de material cartográfico que ilustre lo analizado. Para ello se recurrirá a información de organismos del Estado, entes no gubernamentales (ONGs) y fuentes periodísticas.

La ciudad de Santa Fe, enclavada en el valle de inundación de los ríos Paraná y Salado, vive en continua vulnerabilidad. Si se le suma la insuficiencia de políticas destinadas a la realización de las obras necesarias para mitigar el impacto de fenómenos climáticos, da como resultado una población no sólo vulnerable, sino también desprotegida ante ellos. Sin embargo, frente a los continuos reclamos y movilizaciones de los vecinos, muchos de ellos residentes de las zonas norte y oeste de la ciudad, el Estado se hizo presente. Con el cambio político iniciado en 2007, la municipalidad comenzó una serie de políticas que se proponen otorgar a la ciudad mayores

capacidades para amortiguar los efectos de las inundaciones, y que pretenden posicionarla como "ciudad resiliente". En este sentido, la resiliencia urbana es entendida como "la habilidad de personas, instituciones, empresas y sistemas dentro de una ciudad de sobrevivir, adaptarse y crecer sin importar qué tensión crónica o situación crítica experimente. Las situaciones críticas son usualmente eventos catastróficos como incendios, inundaciones, entre otros" (Fundación Rockefeller, 2015:4).

Palabras clave: resiliencia urbana – políticas públicas – inundaciones pluviales

INTRODUCCION

El emplazamiento de la ciudad de Santa Fe se encuentra sobre una zona de interfluvios en donde el río Salado la escolta por la margen oeste y el sistema del Paraná, por el este. Este valle de inundación está conformado por estos dos ríos importantes, además de arroyos, riachos, lagunas y bañados que en conjunto, representan más del 70% del distrito municipal.

La red hidrográfica configura a la ciudad y es parte de la misma. Define sus paisajes e influye en ciertas actividades pero también puede presentarse como *amenaza*, la cual puede ser entendida como "un evento que puede ocasionar daños y pérdidas a los ambientes y a la comunidad local" (Madariaga, Paoli, 2010: 28). Los cursos fluviales previamente citados han experimentado tanto crecientes ordinarias como extraordinarias provocando anegamientos, destacándose en los últimos años los eventos de 1983 por el Paraná y el de 2003 por el Salado.

Por otro lado, Santa Fe presenta un clima *mesotermal sin estación seca* (CF w´ a h, según clasificación de Köppen) que aporta entre 800 y 1100 mm anuales de precipitaciones. Sin embargo, entre los meses de febrero y mayo pueden presentarse en forma concentrada y torrencial alrededor de la mitad de dicho milimetraje. Es por ello que las inundaciones ocurridas en 2007, 2013, 2015 y a principios de este año, se dieron entre estos meses.

Las características climáticas y la ocupación sobre suelos inundables derivan en una ciudad bajo continuo riesgo y vulnerabilidad. Ante esto se deben realizar obras de infraestructura para mitigar impactos de posibles fenómenos tanto climáticos como atmosféricos. A pesar que los diferentes gobiernos municipales, provinciales y nacionales han ido avanzando en dichas obras, las mismas no son suficientes y además requieren de un mantenimiento constante.

Con el cambio político iniciado en 2007, la municipalidad comenzó una serie de políticas que buscaron preparar a la ciudad frente a estos acontecimientos, las cuales podrían entenderse como iniciativas que se orientan a la resiliencia urbana, de lo cual deriva la pretensión de posicionar a Santa Fe como *ciudad resiliente*. Ante este contexto, surge el interrogante acerca de cuáles son las acciones desplegadas por el gobierno local para lograr este propósito.

ASPECTOS CONCEPTUALES

El término *resiliencia* ha sido objeto de debate fundamentalmente en las últimas décadas. Cada disciplina adapta el concepto de acuerdo a sus requerimientos e intereses, pero el significado etimológico es común a todas; proviene del latín "resilio" que significa *volver atrás, volver de un salto, resaltar o rebotar.* Por su parte, la RAE (2016) lo define como la "capacidad de adaptación de un ser vivo frente a un agente perturbador o un estado o situación adversos".

Es un concepto que data de la Europa decimonónica, en un principio en las ciencias exactas como la física de los materiales, luego la ecología con Holling (1973) quien identifica a la resiliencia como la capacidad de ciertos sistemas ambientales y organismos para ser menos vulnerables o para resistir y responder a condiciones especialmente adversas (Dauphiné, Provitolo 2007 en Méndez, 2012: 217). En la segunda mitad del siglo pasado, comienza a tener una mayor impronta en la psicología que describe las capacidades psíquicas de un individuo para recuperarse tras sufrir un estrés traumático (Cyrulnik, 2001 en Metzger y Robert 2013: 26). Ya en la década de 1980, las ciencias sociales incorporan al término aplicándolo a la capacidad de las personas de desarrollarse en situaciones desfavorables.

La resiliencia urbana, por su parte, es entendida como "aquella capacidad que tienen los ecosistemas urbanos (o mejor aún sus gestores) de anticipar eventos que afectarán la dinámica urbana; y de cómo las implicaciones que ciertos factores económicos, sociales o culturales de dicha dinámica transferirán a la ciudad elementos que le permitirán responder a las adversidades que se puedan presentar en el proceso de gestión urbana" (Ultramari y Denis 2007 en Mallqui Schicshe, 2013: 2); sin embargo Uriarte Arciniega (2013: 8) sostiene que la resiliencia urbana refiere a individuos o colectivos con capacidad para sobreponerse a los efectos adversos y contextos desfavorecidos socioculturamente tras haber sufrido eventos traumáticos, especialmente, catástrofes naturales.

Pero por otra parte, la Fundación Rockefeller identifica ciudades que están en situación de riesgo ante fenómenos sociales, económicos o naturales y cómo éstas responden a ellos, adaptándose a las situaciones y transformándolas en nuevas oportunidades favorables. Además, define a la resiliencia urbana como "la habilidad de personas, instituciones, empresas y sistemas dentro de una ciudad de sobrevivir, adaptarse y crecer sin importar qué tensión crónica o situación crítica experimente. Las situaciones críticas son usualmente eventos catastróficos como incendios, inundaciones, entre otros" (Fundación Rockefeller, 2015: 4).

RESILIENCIA Y SANTA FE CIUDAD

Frente a la catástrofe hídrica de 2003, se puso en evidencia la alta vulnerabilidad de gran parte de la ciudad ante diferentes fenómenos climáticos y/o meteorológicos. Pero se debió esperar unos años más para que el Ejecutivo local comience con importantes políticas destinadas a la mitigación de dichos sucesos.

En el año 2009, el municipio se integra al programa "Desarrollando ciudades resilientes. Mi ciudad se está preparando" de la Oficina de Naciones Unidas para la Reducción del Riesgo de

Desastres con el objetivo de comprometerse con la gestión del riesgo para mitigar la vulnerabilidad social, económica y ambiental. Santa Fe ha sido la primera ciudad argentina en sumarse a esta campaña.

El gobierno local santafesino es el principal actor en la conducción de la ciudad y responsable de lo que ocurre dentro de su distrito. En 2008 mediante la Ordenanza Nº 11512/08 se creó la Dirección de Gestión del Riesgo como un área que integra el gabinete municipal, la cual establece un comité central y varias comisiones específicas para abordar las diferentes instancias de la valoración de riesgos. El mismo es un espacio participativo destinado a trabajar en la prevención y mitigación de riesgos, en los preparativos para dar una mejor respuesta ante los eventos y en la recuperación posterior a emergencias o desastres.

En un discurso del por entonces intendente de la ciudad, Mario Barletta, se sostiene que se deben realizar obras que disminuyan la vulnerabilidad de la ciudad, mantener el sistema de defensas y de desagües, y elaborar diferentes protocolos de actuación, difusión de planes de evacuación, de talleres y actividades participativas con diferentes sectores de la comunidad.

En este sentido, el Plan Urbano de 2010 posee como algunos objetivos "desarrollar como política de Estado la gestión integral de riesgos, incorporando este enfoque en toda la planificación urbana y promoviendo la construcción de una cultura de la prevención" (Plan Urbano, 2012: 7). Según la investigadora de la Universidad Católica de Córdoba, Silvia Fontana (2015), se debe gestionar el riesgo orientando e implementando políticas, estrategias e instrumentos para impedir, reducir y controlar los efectos de fenómenos peligrosos sobre la población, los bienes, servicios y el ambiente. Se concibe al *riesgo* como "la probabilidad o posibilidad de que se produzcan consecuencias económicas, sociales o ambientales en una comunidad durante un periodo de tiempo definido como resultado de la materialización de una amenaza y la existencia de vulnerabilidad en el contexto social y material de la misma (Madariaga, Paoli; 2010: 29). El riesgo de desastre surge cuando las amenazas y/o peligros interactúan con factores de vulnerabilidad físicos, sociales, económicos y ambientales.

Bajo estos antecedentes, con una gestión del riesgo antes fenómenos atmosféricos y climáticos, el gobierno de la ciudad se presenta al programa de la Fundación Rockefeller "100 Ciudades Resilientes" en 2013. El programa es global, habiendo ciudades de todo el mundo, y consta de tres etapas de selección. La primera se dio en 2013 y se eligieron 30 ciudades; en la segunda, que tuvo lugar en 2014, queda seleccionada Santa Fe siendo la única ciudad argentina hasta que en 2015 se sumó la ciudad de Buenos Aires. La decisión de incorporar a la ciudad de Santa Fe a la iniciativa de la Fundación encuentra una justificación en la alta conflictividad, problemas de convivencia y tensión social (registrándose altas tasas de homicidios) que suelen coincidir con las zonas de mayor vulnerabilidad hídrica. El programa financia asesoramiento y asistencia técnica si la ciudad lo requiere, además del equipo de resiliencia que integra el gabinete municipal.

En línea con lo anterior, cabe preguntarse cuáles fueron las obras de infraestructura llevadas a cabo por el municipio para sentar las bases de una ciudad resiliente.

SISTEMAS DEFENSIVOS E INFRAESTRUCTURA CONTRA INUNDACIONES

Uno de los tipos más antiguos y frecuentes de obras de defensa, es una barrera artificial de tierra ubicada paralelamente a la ribera, separando zonas inundables afectadas por posibles crecidas, que recibe el nombre de "terraplén de defensa" o "dique lateral". Estos generalmente son de materiales sueltos, los cuales se obtienen en estado natural o con un mínimo tratamiento. En nuestra región para la construcción de los mismos se suelen utilizar materiales de suelos arcillosos, arenosos o de limos en su composición. En la selección del trazado es necesario tener en cuenta los efectos posibles de la obra debido a la incidencia del curso de agua sobre el talud mojado, la disponibilidad de reservorios y otros impactos.

En este sentido y de forma complementaria a las obras de defensa fluvial, es necesario hacer un conjunto de estructuras de defensa pluvial, para evitar inundaciones pluviales dentro del recinto defendido, que se denominan "obras de desagües". La función de ellos es evacuar el agua precipitada dentro del área protegida, ya que el escurrimiento natural se ve impedido por la construcción de los terraplenes. Dentro de la zona urbana deben existir desagües que incluyen bocas de tormenta que son las primeras entradas del agua de lluvia al sistema de drenaje y se ubican en la vía pública. Luego el agua pasa de éstas a los conductos, que son caños de hormigón de diámetro variable que comunican bocas de tormenta con las cámaras de inspección sobre los conductos colectores de desagües pluviales. Los mismos son cañerías que sirven para el desagüe de la ciudad, y junto con los canales troncales a cielo abierto, transportan el agua desde la boca de tormenta a los reservorios.

Los reservorios son aquellas áreas adyacentes a la defensa o terraplén, deprimidas, que deben estar libres de ocupación y su principal función es almacenar agua de lluvia de manera transitoria para luego ser evacuada fuera de ella mediante dos maneras, gravedad o por bombeo. La descarga por gravedad consiste en la instalación de compuertas que dejan pasar el agua desde el canal de acceso atravesando el interior del terraplén, cabe aclarar que las compuertas deben ubicarse en la cota más baja del reservorio, pero la descarga en un nivel superior al curso de agua exterior al terraplén; y por bombeo, por una estación ubicada en el reservorio próximo a la defensa.

Las estaciones de bombeo son plantas equipadas para extraer el agua de la ciudad hacia afuera de los terraplenes mediante electrobombas o motobombas

Todas las estructuras hidráulicas de protección contra inundaciones deben ser controladas y mantenidas para prevenir posibles desastres.

SISTEMA DE DEFENSA FLUVIAL DE LA CIUDAD

En 1993, el Estado provincial con financiamiento externo, comienza las obras de defensa tanto sobre el Río Salado como el Paraná. No obstante, las obras de remoción y levantamiento de los suelos y, la construcción de terraplenes provisorios, se produjeron en décadas anteriores como medidas primigenias ante el avance del río.

Las defensas realizadas sobre la ribera del Paraná, en los tramos La Guardia, Los Naranjales, Villa Añati, Rincón, Garelo, Colastiné Norte, Santa Rita y Virgen de Guadalupe, forman un recinto cerrado alrededor de la ruta provincial N° 1, de 20 kilómetros de longitud aproximadamente. Aquí coexisten defensas construidas por métodos de refulado de arena y por métodos convencionales (en general, materiales arcillosos). Al norte del sector mencionado, se desarrolla la defensa de Rincón Norte y Arroyo Leyes, la cual utiliza como cierre oeste al terraplén de la RP 1, el cual mide unos 10 km de longitud. El anillo de defensas que protege a Rincón y Colastiné se construyó luego de la inundación de 1992, con fondos del Banco Internacional de Reconstrucción y Fomento (del Banco Mundial).

Algunos barrios como La Guardia Centro y El Pozo, cuentan con defensas propias. La defensa de Alto Verde contiene un terraplén de 8,6 km de longitud protegiendo al sector netamente asentado sobre el valle aluvial del río Paraná, siendo construido entre 1993 y 1996.

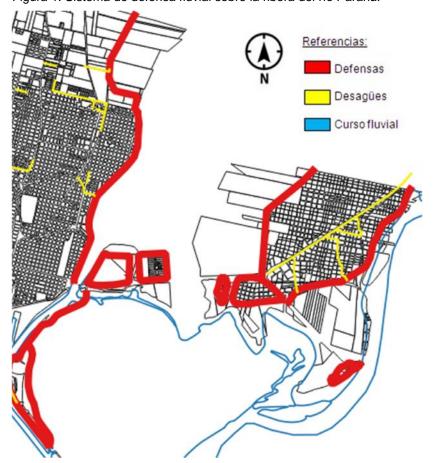
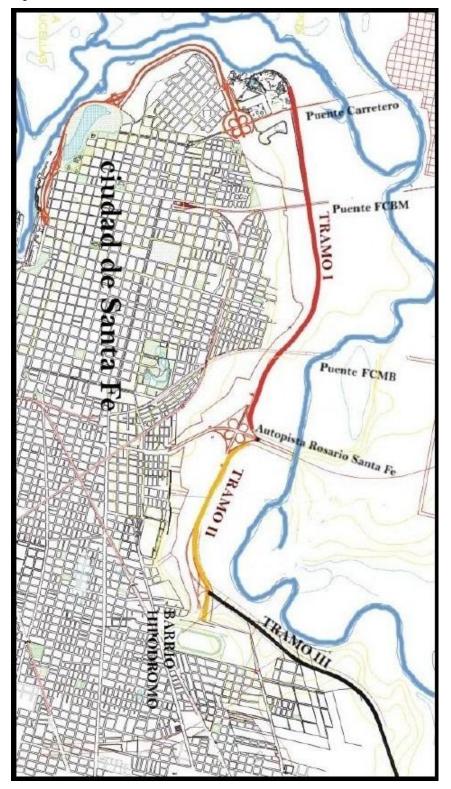


Figura 1: Sistema de defensa fluvial sobre la ribera del río Paraná.

Fuente: Elaboración propia en base a información municipal.


Ahora bien, sobre el tramo inferior del Río Salado se llevó a cabo un sistema de obras de defensa longitudinales cuya ejecución se diagramó en tres tramos, donde su misión primaria era la de

protección del sector oeste del ejido urbano. El Tramo I que se construyó entre los años 1994 y 1997 bajo los mandatos de los intendentes Jorge Obeid (1991-1995) y Horacio Rosatti (1995-1999), está compuesto por la readecuación del terraplén Irigoyen y ocupa el sector comprendido entre el puente carretero (RN 11) y la autopista Rosario-Santa Fe. La cota de coronamiento en el sector es de 16,80 metros presentando en la parte superior un muro deflector de olas que se eleva hasta la cota 17,50 metros. El Tramo II abarca el sector comprendido entre el puente de la autopista y la calle Gorostiaga, materializado en el mismo período que el Tramo I. Su cota de coronamiento se encuentra entre 17,25 y 17,45 metros. Por último, el Tramo III comprende el sector del río entre el hipódromo Las Flores y un sector de cotas elevadas al norte de Recreo. Este tramo se realizó con posterioridad a la inundación de 2003, licitada de manera urgente, lo que hizo que se consumiera todo el presupuesto en el movimiento de suelo, debiéndose hacer otra licitación para construir el pavimento y así continuar la Av. Circunvalación (hoy RN 11) (El Litoral, diciembre de 2008). El tramo III de las defensas del cordón oeste de la ciudad es hidrovial, ya que cumple la función de defender al casco urbano de posibles crecidas del Salado y además es sostén de la ruta Nacional Nº 11. Con el cierre de este tramo se finalizaron las obras que completan la estructura defensiva; sin embargo, se vienen realizando tareas permanentes de mantenimiento y protección en los distintos sectores de la ciudad.

Figura 2: Sistema de defensa fluvial sobre la ribera del río Salado.

Fuente: Pericia hidráulica del Poder Judicial de la provincia de Santa Fe, 2005.

SISTEMA DE DEFENSA PLUVIAL SANTAFESINO

SISTEMA DE DESAGÜES

Dentro del planeamiento urbano, las obras de desagüe revisten suma importancia, realizándose por ello proyectos para su construcción desde el siglo pasado. En este sentido, se realizará una nominalización cronológica de las obras concretadas y en ejecución a partir de 2007.

- Catamarca: se encuentra en la intersección de las calles Catamarca y Av. Gobernador Freyre, con unos pocos metros de longitud. Su licitación comienza en 2010 y su finalización data del año 2012 beneficiando a vecinos de la zona, una de las más críticas de la ciudad en cuanto a inundaciones.
- Facundo Quiroga: finalizado en 2012, se encuentra sobre calle Facundo Quiroga entre Aristóbulo del Valle y Zavalla. Beneficia a vecinos del barrio René Favaloro, al norte de la ciudad en el límite con la localidad de Recreo.
- Altos del Valle: las obras comenzaron en 2012 y concluyeron un año más tarde, extendiéndose sobre calle Los Cedros entre Aristóbulo del Valle y Pasaje Las Margaritas, localizándose al límite norte de la ciudad y beneficiando a 90 familias. El desagüe capta el agua para conducirla a las bocas de tormenta para conducirlas hacia el zanjón central de la avenida Aristóbulo del Valle.
- Lavaisse: finalizado en 2013, tiene influencia sobre varios barrios del noroeste de la ciudad, con una extensión de cerca de 3 kilómetros.
- *Berutti*: finalizado en 2014, se extiende sobre la calle con el mismo nombre, desde Pasaje Ruiz hasta el reservorio de la estación de bombeo nro. 6. Beneficia a 4000 personas de barrio Los Troncos.
- *Tramo El Sable:* su licitación comenzó en 2010, las obras se iniciaron en 2011 y finalizaron en 2014 (aunque el plazo de ejecución estaba previsto en un año y medio). El entubamiento permite el drenaje del agua y acelera los tiempos de escurrimiento. El desagüe posee una extensión de 400 metros que se conecta con los reservorios del oeste. Son 1500 familias las que se ven beneficiadas de manera directa y otras 900 de forma indirecta.
- Estado de Israel: finalizado en 2014, fue financiado por el municipio y consiste en una obra de entubado del antiguo zanjón en la calle Estado de Israel. Cuenta con una extensión de 300 metros, desde Av. Blas Parera hasta cercanías del reservorio del oeste colindante al hipódromo, en el cual se vierten las aguas.
- Larguía: situado sobre la calle del mismo nombre, entre Gorriti y Callejón Aguirre, fue inaugurada a fines de 2014 y consistió en la construcción de aproximadamente 400 metros de conducto pluvial. Asimismo, posee cámaras de registro en la intersección de algunas calles con el canal a cielo abierto existente en el cantero central de Callejón Aguirre. Beneficia a numerosas familias del noroeste de la urbe.
- Domingo Silva: comienza a licitarse en 2014, y su ejecución comprendió un plazo de 4 meses, finalizándose a principios de 2015. Se ubica sobre el acalle Domingo Silva, desde la Av. Presidente Perón hasta llegar a uno de los reservorios del oeste. Beneficia a 5000 vecinos del

barrio Barranquitas Sur, y consistió en la colocación de dos conductos (uno en cada vereda) con sus correspondientes bocas de tormenta. En conjunto con los desagües Zenteno y La Rioja contribuyen a evacuar la zona oeste de la ciudad, beneficiando a miles de vecinos de esa zona.

- *Bulevar French*: esta obra beneficia a cerca de 30000 personas de vecinales como Guadalupe y Coronel Dorrego, influyendo sobre un área de alrededor de 365 hectáreas. La obra se inauguró en 2015, junto con el nuevo Bv. French, cuyas tareas se vinieron realizando desde años anteriores. Junto a los desagües de las calles *Rivadavia* y *Güemes* con los cuales intersecta, éste deriva los excedentes pluviales a la laguna Setúbal.
- Entre Ríos: la obra comienza en 2007, la cual se vio interrumpida hasta retomarse en 2010 y finalizar en 2015. Beneficia a más de 15000 vecinos de los barrios San Lorenzo, Arenales y gran parte de la zona. El financiamiento fue en conjunto entre nación y municipio.
- *Piedrabuena*: por su parte esta obra se encuentra situada en barrio Ledesco, habiendo finalizado a fines de 2015, con un total aproximado de 810 metros de conducto pluvial ejecutado con tubos circulares de hormigón armado y beneficia a unos 3000 vecinos.
- Ruta 1, El Lele, Los Jazmines y Los Algarrobos: están ubicados en el distrito La Costa, al este de la ciudad. Dicho distrito abarca los barrios: Colastiné Norte, Colastiné Sur, El Pozo, La Boca, Alto Verde, La Guardia Colastiné, Pro mejoras Alto Verde, Vuelta del Paraguayo. En su conjunto benefician a los habitantes de esos barrios. Finalizados en su totalidad en el año 2015, El Lele, Los Jazmines y Los Algarrobos, se conectan al ejecutado sobre la Ruta 1, sirviendo de complemento a éste.
- -Arenales y su complementario Larrea, localizados en el barrio Los Ángeles (Distrito Norte). Estos desagües permiten un mejor escurrimiento del agua de Iluvia, beneficiando a 70.000 personas de las vecinales Sarmiento, Las Lomitas, San Martin, San José, Gral. Belgrano, Transporte, Facundo Quiroga, Pompeya, 21 de Octubre, Las Flores 1 y 2, Tránsito, Scarafia, Juventud del Norte, Juana Azurduy, Santo Domingo, entre otras. Por otro lado, su complemento sobre calle Larrea, desde su intersección con Arenales hasta Blas Parera. En conjunto posee una extensión de 2,5 kilómetros, habiendo finalizado el primer tramo en 2014 y el complemento a comienzos de 2016.
- Demetrio Gómez: ubicado en el barrio de Alto Verde, es una obra complementaria a la pavimentación de la calle con el mismo nombre. Fue inaugurado a mediados de 2016 y beneficiará a un gran porcentaje de vecinos de la zona.
- Azcuénaga: inaugurado recientemente (junio de 2016), este desagüe permite disminuir el riesgo hídrico por lluvias en la denominada cuenca Flores. Beneficia a 5600 de forma directa, pero impacta sobre un área donde viven cerca de 10 mil santafesinos.

Además de los nombrados anteriormente, existen otros de menor envergadura como Güemes, General Paz, Suipacha y Vélez Sarsfield que benefician a vecinos de diferentes barrios de la ciudad.

Entre las obras en marcha se destaca el desagüe *Llerena*, siendo este un colector principal que permitirá mejorar el escurrimiento del agua de lluvia de los barrios Sargento Cabral, Unión y

Trabajo, María Selva y San Roque, y beneficiando indirectamente al sector noreste de la ciudad, pero también a zonas del oeste ya que capta el agua de otros desagües. Se ubica entre la Av. General Paz y la Av. Almirante Brown y supone una inversión de 60 millones de pesos. La descarga será por gravedad o bombeo hacia la laguna Setúbal. Además el *Túnel Linner*, ubicado sobre la calle Larrea, entre Dorrego y General Paz, al noreste de la ciudad, y que todavía se encuentra en construcción y beneficiará a más de 36.000 vecinos de los barrios Central Guadalupe, Guadalupe Oeste y Este y Coronel Dorrego.

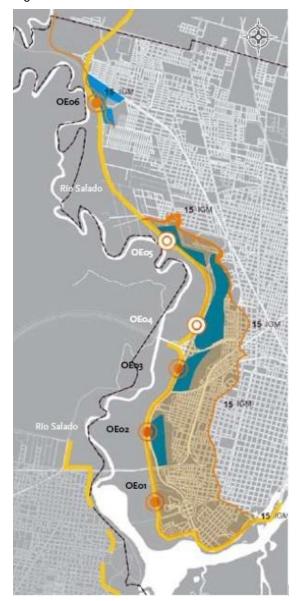
Con respecto a los reservorios, en abril de 2014 se aprueba la ordenanza N° 12.179 que contempla transformar dos de ellos, localizados en el oeste de la ciudad, para diseñar y desarrollar una reserva natural urbana y gestión de riesgos climáticos. La creación de esta reserva supone delimitar su perímetro y realojar a las familias que viven allí de manera informal. Este proyecto se inscribe dentro del conjunto de acciones locales basadas en el programa Desarrollando Ciudades Resilientes de Naciones Unidas en las que incorpora la dimensión ambiental como elemento fundamental del desarrollo del sector, tanto en términos de gestión de riesgos, como de optimización de la calidad de vida y de desarrollo socio-económico. Esta obra está financiada por el Fondo Francés para el Medioambiente Mundial (FFEM) y el Plan Abre.

Referencias:
Defensas
Cursofluvial

Figura 3: Sistema de desagües: obras concretadas y en ejecución a partir de 2007.

Fuente: Elaboración propia en base a información municipal.

ESTACIONES DE BOMBEO EN LOS SECTORES OESTE Y ESTE DE LA CIUDAD


En las estaciones se encuentran electrobombas y motobombas, trabajando las primeras en forma continua y de modo automatizado de acuerdo con el nivel de agua en los reservorios; su capacidad de bombeo varía desde 300 m³/h a los 5000 m³/h. Las segundas, instaladas en 2008, se encienden sólo ante determinados niveles críticos, porque debe haber suficiente cantidad de agua en el cuenco de aducción para bombear. Se usan solo, como se dijo, en casos de emergencia y su capacidad de bombeo es de 20000 m³/h.

Las estaciones de bombeo 1 a 4 no tienen conducto de descarga, por lo que el agua proveniente de lluvia debe ser evacuada por bombeo, mientras que las 5 a 9 sí lo disponen, pudiendo el agua de lluvia ser expulsada por bombeo o sistema de gravedad de acuerdo a la inclinación del terreno en cada caso.

Las mismas se componen de un cuenco de aducción con distintas rejas que filtran residuos, para que luego pase a un cilindro donde se encuentran las electrobombas.

Figura 4: Estaciones de bombeo del sector oeste de la ciudad de Santa Fe.

Fuente: Aguirre Madariaga, Paoli, 2010.

En la actualidad, la ciudad posee 64 km. de defensas (repartidos entre la mancha urbana central, Colastiné Norte y Sur, La Guardia, Ciudad Universitaria y El Pozo, Alto Verde) las cuales son de diferentes jurisdicciones (nacional, provincial y municipal); 152 bombas (fijas, móviles y de reserva); 250 ha. destinadas a reservorios; 125 km. de desagües pluviales; 60 km de canales a cielo abierto y 13 estaciones meteorológicas propias del municipio (Dirección de Gestión de Riesgos, Municipalidad de Santa Fe).

EVENTOS DE CRECIDAS E INUNDACIONES EN EL SIGLO XXI

Ahora bien, con la descripción de los sistemas de defensa e infraestructura defensiva pluvialfluvial, se analizarán sucesos que la ciudad experimentó en diferentes momentos de este siglo, como así también se dejará entrever la evolución de las obras destinadas a mitigar el impacto de estos fenómenos.

CASO 2003

Durante cinco días del mes de marzo, las lluvias se concentraron en el cauce bajo del río Salado acumulándose 1400 milímetros, lo que provocó un crecimiento desmedido. Si bien en los primeros días del evento la ciudad no experimentó una situación de gravedad, conforme el flujo del río fue acercándose a Santa Fe, comenzaron a manifestarse anegamientos al norte del hipódromo de la ciudad. Pero el martes 29 de abril, el río Salado logró entrar por una brecha del terraplén a la altura de calle Gorostiaga, producto además del "efecto embalse" que provocaba la escasa luz de paso del puente situado sobre la autopista Santa Fe-Rosario.

En 2003, la defensa oeste de la ciudad contaba con tramos I y II, siendo precario el final de este último, no encontrándose finalizado hasta los niveles máximos de protección previstos en su diseño. La calle Gorostiaga presenta una cota media de +16,40 m, razón por la cual se previó, desde el proyecto ejecutivo de la obra, realizar un cierre temporario y provisorio realizado mediante bolsas de arena y otros elementos de contención junto a las instalaciones del paredón sudeste del hipódromo de Las Flores.

Por lo tanto, el terraplén de defensa del tramo II fue concebido y proyectado con un cierre final provisorio que dejaba interrumpida la cota de coronamiento prevista en +17,50 m en un sector aledaño al hipódromo. Es por ello que el agua erosionó e ingresó por sobre este tramo de la defensa, y al momento de dicho ingreso, la brecha existente era inferior a 15 metros pero luego, debido a la presión ejercida por la misma, superó los 100 metros (según Pericias Hidráulicas, 2005) inundando a más de un tercio de la ciudad.

El avance del río sobre la ciudad alcanzó la planta transformadora de energía "Santa Fe oeste", por lo que la electricidad que alimentaba a las dos electrobombas que se encontraban en funcionamiento en ese entonces, dejaron de hacerlo.

Los terraplenes que debían servir de defensa, ayudaron a que las aguas se embalsaran, impidiendo el escurrimiento. Es por eso que en los sectores más bajos de la ciudad, los más pobres, fueron los más perjudicados, debiendo derrumbarse posteriormente siete segmentos de los tramos del terraplén, con el objetivo de drenar las aguas.

Se contabilizaron 28.000 viviendas afectadas, 5.000 establecimientos agropecuarios fuera de servicio, 2 millones de hectáreas afectadas en zona rural y 1.500 millones de dólares para reconstruir la infraestructura de la ciudad, las viviendas y las pérdidas agropecuarias. La inundación también impactó sobre la salud de la población y puso a la ciudad de Santa Fe en una situación sanitaria crítica, llegando a ser la más grave de su historia. El gobernador por ese entonces, Carlos Reutemann, declaró 23 muertos directos por la inundación, pero ONGs y

familiares elevaron la lista a 160 personas, ya que se contabilizan aquellos que fallecieron como consecuencias físicas y psicológicas producidas por la tragedia.

Figura 5: Sector de ingreso del río Salado a la ciudad en 2003.

Fuente: Google Earth, 2016.

CASO 2007

A fines del mes de marzo (días 26 a 29) se registraron 363,7 mm (monto total mensual: 551 mm), siendo un fenómeno provocado por precipitaciones excepcionales. Como es característico del clima mesotermal la mayor concentración de lluvias se da en los meses de otoño.

Hasta ese momento, si bien el plan director de obras del INA (Instituto Nacional del Agua) había sido elaborado en 2001, nunca fue acompañado de las obras correspondientes. En este sentido, las falencias en el sistema de desagües se debieron tanto a la falta de obras como a la ausencia de mantenimiento sobre las existentes. Al momento de la inundación, se relevó que el 60% del sistema de bombeo (27 de 45 bombas) no se encontraban en condiciones operativas, o no estaban instaladas, por problemas de mantenimiento o falta de energía eléctrica (Comisión Investigadora de la Inundación HCM, 2007: 19). Por otro lado, el propio secretario de planeamiento, Arq. Carlos Giobando, reconoció en octubre de 2006 que la ciudad no presentaba un plan de ordenamiento territorial. Además, la ciudad contaba con un plan de contingencia "virtual" (2005), ya que existía en los papeles, pero no así en los hechos. Paradójicamente, un año más tarde comienzan a realizarse reuniones con las vecinales para elaborar un plan que en teoría estaba realizado y difundido un año antes por los medios de comunicación.

Ante la falta de un plan de contingencia, las evacuaciones se realizaron de manera desordenada y caótica, teniendo la municipalidad una escasa participación con lo cual la provincia se hizo cargo de la crisis. Es ese momento, la población afectada superó los 27 mil evacuados.

CASO 2013

En la madrugada del 11 abril, entre las 4:30 y 7:30 am, varios barrios del norte y oeste de la ciudad se vieron anegados por precipitaciones que en promedio llegaron a los 135,8 mm. Sin embargo, en distintos sectores de la ciudad, los registros llegaron a marcar alrededor de 160 mm. En diferentes puntos de la ciudad, el agua alcanzó la altura de un metro; barrios como San Lorenzo y Chalet (suroeste de la ciudad) se vieron anegados y hubo autoevacuados y, en barrio Nueva Pompeya (norte de la ciudad), la municipalidad dispuso de un centro de evacuación. No obstante, ciertos desagües se encontraban ya ejecutados como ser el Catamarca (2012), Facundo Quiroga (2012), Altos del Valle (2013) y Lavaisse (2013). En palabras del intendente José Corral para el "Diario Popular", los barrios afectados son justamente aquellos en donde las obras estaban ausentes. Además, la infraestructura hídrica estaba al límite de su funcionamiento. A esta situación se le suma la interrupción del servicio de transporte, luz y educación en algunas escuelas en el turno mañana.

CASO 2015

Nuevamente entre los últimos días de febrero y los primeros de marzo, se produjeron precipitaciones extraordinarias, cuyo momento de mayor intensidad había sido desde las 5 am del día 3 de marzo. Sumando los registros diarios de este período, se observa que ha llovido alrededor de un tercio del promedio anual, es decir cerca de 420 mm.

Debido a las obras de desagües ya ejecutadas, el agua escurrió más rápido que en ocasiones anteriores, siendo pocos los barrios anegados. Para este entonces, los desagües ya construidos eran Berutti (2014), tramo El Sable (2014), Estado de Israel (2014), Larguía (2014), Domingo Silva (2015), Entre Ríos (2015).

En un análisis comparativo con respecto a 2007, donde los montos fueron similares y los barrios afectados los mismos, se puede observar que la cantidad de personas evacuadas disminuyó notablemente dando cuenta de la efectividad de las mismas a partir de entonces. En 2007 se encontraban más de 27000 personas evacuadas y en 2015, mil, 500 de las cuales son provenientes de los barrios Pompeya, Villa Teresa, Juventud del Norte, Yapeyú y La Ranita.

Figura 6: Tablas de registros pluviométricos, 2007, 2013 y 2015.

Año 2007 (1º semestre)			
Mes	Monto total	Máximos mensuales	Media mensual
Enero	116,3	45,2	12,9
Febrero	98,8	30	11
Marzo	551,5	146,5	36,8
Abril	110,5	68,5	13,8
Mayo	38,9	28,7	7,8
Junio	31,9	14,2	4
Año 2013 (1º semestre)			
Mes	Monto total	Máximos mensuales	Media mensual
Enero	52,7	22	10,5
Febrero	79,9	36,2	7,3
Marzo	71,5	48,2	8,9
Abril	233,7	135,8	39
Mayo	68,1	48,4	6,2
Junio	24	16,5	3,4
Año 2015 (1º semestre)			
Mes	Monto total	Máximos mensuales	Media mensual
Enero	228,35	81,75	25,4
Febrero	214,25	159	30,6
Marzo	208,5	118,5	26,1
Abril	27,75	15,25	5,6
Mayo	24,25	14	2,7
Junio	61,5	35,75	12,3

Referencias

Mes donde la inundacion causó mayor estrago Mayor monto total

Mayor máximo mensual

Fuente: Centro de Información Meteorológica, 2016.

CONCLUSION

Santa Fe ha sido castigada reiteradas veces por inundaciones, tanto por los ríos que la rodean como por precipitaciones.

En 2003, un tercio de la ciudad quedó bajo las aguas del Salado por la precariedad del final del tramo II de las defensa del oeste. Con 23 muertos y más de 30 mil evacuados, la ciudad se paralizó por semanas ante la falta de organización y de un plan de contingencia.

El año 2007 llegó con excesivas precipitaciones registradas en marzo y abril, provocando una nueva inundación a Santa Fe. Nuevamente, principalmente en el norte y oeste de la ciudad.

Con estos sucesos se dejó entrever la gran vulnerabilidad de la población ante inundaciones tanto fluviales como pluviales. El riesgo con que cuenta la ciudad por el emplazamiento sobre un valle de inundación, debió ser gestionado para mitigar el impacto de tales fenómenos.

Con la llegada de un nuevo signo político a la municipalidad, el riesgo se tomó como política de Estado. En 2008 se crea el sistema municipal de gestión del riesgo con el objetivo de prevenir y generar los preparativos para dar una mejor respuesta ante los eventos y en la recuperación posterior a emergencias o desastres.

Con la puesta en marcha de ambiciosos proyectos de obras de infraestructura hídrica desde los principios de este siglo, la ciudad se convierte en una ciudad resiliente según las definiciones de la misma. La resiliencia urbana significa recuperación, salir fortalecidos de un evento que afecta a su población y la dinámica urbana. Para disminuirlos, lo primero que se debería hacer es conocer los riesgos, para así poder diseñar e instrumentar políticas.

El gobierno municipal con sus políticas de gestión del riesgo y de construcción de obras en desagües, mantención de ellos y de reservorios, estaciones de bombeo y otras, preparan mejor a la ciudad ante estos sucesos; ello se dejó entrever entre las inundaciones de 2013 y 2015. Sin embargo, mucho falta por hacer; se requiere de decisiones políticas y compromiso social para mejorar la ciudad.

Las obras de infraestructura llevadas a cabo por el municipio a partir de 2007, sentaron las bases para la "construcción" de una Santa Fe resiliente.

BIBLIOGRAFIA

- **Aguirre Madariaga, E.; Paoli, C.** (2010). *Proyecto aula-ciudad*, fascículo 5, Gobierno de la ciudad de Santa Fe.
- Aguirre Madariaga, E.; Valsagna, A.; Viduzzi, V. (2013). Aprender de los desastres. La gestión local del riesgo en Santa Fe, a 10 años de la inundación de 2003. Gobierno de la ciudad de Santa Fe.
- **Alto Verde: arrancó la pavimentación de la calle principal.** *Diario UNO.* Santa Fe, 2 de noviembre de 2015.
- **Bacchiega, J.; Bertoni, J.; Maza, J.** (2005). *Expediente de pericias hidráulicas*. Poder Judicial de la provincia de Santa Fe.
- **Decreto H.C.M. № 441/2007 (**2007) *Informe de la Comisión Investigadora de la Inundación.*Honorable Concejo Municipal de la ciudad de Santa Fe.
- El desagüe complementario Arenales beneficia a 400 familias. Diario UNO. Santa Fe, 22 de julio de 2015.
- El Municipio realiza el entubamiento del zanjón en Callejón El Sable. *Diario UNO*. Santa Fe, 3 de julio de 2014.
- Fontana, S. (2015). Ya no se puede hablar de catástrofes naturales. Diario La Voz, Córdoba.
- Instituto Nacional del Agua (2012). Plan director de desagües. Ciudad de Santa Fe.
- Mallqui Shioshe, A. (2013). ¿Resiliencia urbana o ciudades resilientes? Qué tan preparadas están las ciudades para el término o qué tanto éste es apropiado para entender y acompañar las nuevas dinámicas urbanas. Fractal Revista de Arquitectura-UPLA, Chile.
- **Méndez, R.** (2012). Ciudades y metáforas: sobre el concepto de Resiliencia urbana. Centro de Ciencias Humanas y Sociales.
- **Metzger, P.; Robert, J.** (2013). *Elementos de reflexión sobre la Resiliencia urbana: usos criticables y aportes potenciales.* Revista Territorios, N° 28, Universidad del Rosario, Colombia.
- Nueva protección en la defensa de la Circunvalación Oeste. El Litoral. Santa Fe, 29 de diciembre de 2008.
- Plan Norte: el Intendente y el Gobernador recorren la obra del desagüe Larrea. Diario UNO. Santa Fe, 18 de enero de 2016.
- Poder Judicial de la provincia de Santa Fe (2005) Expediente Nº 1341/2003 Anexo II Obras de infraestructura existentes en el valle del Río Salado.
- **Tablas de registros pluviométricos** (2016) Centro de Información Meteorológica. Facultad de Ingeniería y Ciencias Hídricas. UNL.
- **Twigg, J.** (2007). Características de una comunidad resiliente ante los desastres: nota guía (Diego Bunge, trad.). Departamento para el desarrollo internacional del gobierno del Reino Unido.
- Uriarte Arciniega, J. (2013). La perspectiva comunitaria de la resiliencia. Psicología Política, N°47, Universidad del País Vasco, España.

- Viand, J.; Gonzalez, S. (2012) Crear riesgo, ocultar riesgo: gestión de inundaciones y política urbana en dos ciudades argentinas. 1er Encuentro de Investigadores en Formación de Recursos Hídricos. Buenos Aires: Instituto Nacional del Agua.
- **Wolansky, S. y otros** (2002). *Terraplenes de defensa contra inundaciones. Aspectos físicos y constructivos, mantenimiento y conservación.* Editorial UNL, Santa Fe.